АКУСТИКА КОНТРОЛЬНЫХ КОМНАТ
Контрольная комната - это помещение, где находится рабочее место звукорежиссера и где размещается оборудование: микшерный пульт, контрольные агрегаты, цифровые звуковые станции, процессоры обработки звука, магнитофоны и другая дополнительная аппаратура. Пример размещения оборудования показан на рисунке 4. Требования к акустическим характеристикам контрольной комнаты вытекают из обеспечения условий для слухового контроля создаваемых музыкальных и речевых записей. Кроме того, в настоящее время контрольные комнаты часто используются для непосредственного создания и записи электронной музыки.
Контрольные комнаты должны удовлетворять следующим основным условиям:
- позволять слышать сухой и чистый звук контрольных агрегатов, т. е. не вносить своего окрашивания;
- не вносить существенных искажений в характер реверберационного процесса студии, где была произведена запись звука;
- обеспечивать возможность звукорежиссеру услышать и сформировать пространственный звуковой образ, который он хочет передать слушателю;
- быть звуконепроницаемыми (изнутри и снаружи) для обеспечения низкого уровня шумов;
- позволять звукорежиссеру видеть музыкантов, то есть иметь звуконепроницаемое окно в студию.
До недавнего времени в основе акустического проектирования контрольных комнат лежала концепция повторения параметров среднестатистического жилого помещения, то есть считалось, что звукорежиссер должен находиться в условиях, близких к условиям домашнего прослушивания. Среднее время реверберации выбиралось 0,2…0,4 с. Объемы также были небольшими и составляли 30…40 м³. Такие помещения удовлетворительно работали для записи музыки с небольшим динамическим диапазоном. Кроме того, условия реального прослушивания музыкальных и речевых сигналов, переданных по каналам радиовещания, телевидения, звукозаписи и пр., настолько разнообразны, что приведенные выше требования нельзя считать типовыми для жилых помещений
Следующим этапом явилась концепция построения контрольных комнат, получившая название LEDE (live-dead end), в которой звукорежиссер работал на границе двух сред — «живой» (live), с большим количеством отражений, и «мертвой» (dead), свободной от отражений. В основе такого построения контрольных комнат лежало соображение, что одним из важнейших критериев качества акустики в помещении является время прибытия ранних отражений, которое должно быть в пределах 20…30 мс после прямого звука. Если в студии при записи обеспечено это требование, то первые отражения в контрольной комнате не должны маскировать их, поэтому полезно переднюю часть контрольной комнаты (стены за контрольными агрегатами, полы и потолки) сделать заглушенными (dead end), а заднюю часть комнаты сделать отражающей (live end). В этом случае структура реверберационного процесса в контрольной комнате должна иметь вид, показанный на рисунке 5. Для того, чтобы заднюю часть комнаты сделать отражающей, на задней стене и потолке должны устанавливаться различные отражающие решетки (рисунок 6).
Такая конструкция комнаты позволяла звукорежиссеру ощущать живые отражения, но вместе с тем звук от студийных мониторов воспринимался им без искажения, поскольку на прямой звук не накладывались отражения комнаты. Однако такие контрольные комнаты было очень трудно настраивать и, кроме того, возросшие требования к передаче стереопанорамы и расширенного динамического диапазона для цифровых записей требовали снижения уровня реверберационных помех. Тем не менее, целый ряд известных студий (Master Sound Astoria в Нью-Йорке, Red Bus Studios в Лондоне, Winfeld Sound в Торонто и др.) продолжают использовать контрольные комнаты, построенные по такой концепции, и в настоящее время.
В конце 80-х годов была предложена конструкция «бессредных» контрольных комнат. Идея их проектирования была предложена англичанином Т. Хидли, и реализована Ньюэллом во многих студиях мира. Она заключается в следующем: все поверхности, в направлении которых излучают студийные контрольные агрегаты (то есть потолок, задняя стена и боковые стены), делаются звукопоглощающими, а поверхности перед звукорежиссером — передняя стена и пол — делаются звукоотражающими. Это позволяет звукорежиссерам слышать прямой звук мониторов, не окрашенный дополнительными отражениями, и в то же время получать отражения собственных голосов от передней фронтальной поверхности пола и находящегося в комнате оборудования (пульта, компьютеров, стоек и др.). Для обеспечения поглощения звуковой энергии во всем воспроизводимом диапазоне частот (особую проблему представляет обеспечение поглощения на низких частотах) используется новая технология так называемых «звуковых ловушек». Конструкция стены с боковыми ловушками и общий вид «бессредной» контрольной комнаты показан на рисунке 7.
На определенном расстоянии от главной несущей стены устанавливается дополнительная «диафрагменная» стена, состоящая из деревянной рамки с трехслойным покрытием (гипсовая штукатурка плюс мягкая древесно-волокнистая плита и снова гипсовая штукатурка). Затем на ней закрепляется поглотитель, например, из специальной минеральной ваты или синтепона. На некотором расстоянии от него подвешиваются под углом 45° и на расстоянии 30…46 см панели из фанеры, покрытые звукопоглощающим материалом, общая глубина панелей 0,6…1,2 м. Установленные таким образом панели служат волноводами, поглотителями и рассеивателями для низкочастотных звуковых волн. Поглощение средних и высоких частот обеспечивается традиционными методами и зависит от свойств поглотителя на стенах. Измерения процесса реверберации, выполненные в таких комнатах, показали, что в первые моменты времени (до 50 мс) происходит очень быстрое поглощение отраженной энергии, что дает ощущение мельчайших нюансов в звучании мониторов, в то время как в обычных комнатах эти детали маскируются реверберационным процессом.
Такого типа комнаты потребовали применения контрольных агрегатов с высоким уровнем звукового давления и малыми переходными характеристиками, поэтому в них часто используются мониторы с рупорными громкоговорителями (например, фирмы JBL).
Контрольные комнаты, построенные по такой концепции, показали возможность получения в них записей высочайшего качества с высокой прозрачностью звучания, что особенно важно для цифрового звука. Учитывая, что контрольные комнаты используются теперь нередко и как исполнительские студии для записи электронной музыки, то такой принцип их построения лучше соответствует этой музыке (в них легче вносить искусственную реверберацию).
Уровень шумов в контрольных комнатах не должен превышать NC25 для обеспечения большого динамического диапазона при записи, что накладывает особые требования к звукоизоляции стен и их размещению. Также как и при строительстве студий звукозаписи, при конструировании контрольных комнат проблема снижения уровня шумов требует решения сложнейших задач, в том числе при выборе материалов для звукопоглощения и звукоизоляции.
Широкое внедрение в практику современных пространственных систем звукозаписи изменило и требования к параметрам современных контрольных комнат. В международных стандартах и рекомендациях: ITU-R BS.775-1, SMPTE RP-173, EBU R22, EBU Tech3276, ITU-R BS.1116-1 и др. оговариваются требования к размерам и форме контрольных комнат, параметрам звукового поля в них, параметрам и способам расстановки контрольных агрегатов. Прежде всего для контроля качества пространственных звукозаписей требуется установка большого количества мониторов (например, шести), расположенных по схеме, показанной на рисунке 7.
Эксперименты с выбором оптимальных условий для помещений прослушивания пространственных систем показали, что общий объем студийных контрольных комнат должен быть порядка 300 м³ , а пропорции должны соответствовать указанным в таблице 1 для обеспечения оптимального распределения резонансных мод в помещении. Форма комнаты — в основном, симметричная относительно направления на зону прослушивания и относительно расположения звукопоглощающего материала, особенно вокруг громкоговорителей, дверей, окон и технического оборудования. Это делается с тем, чтобы избежать любых акустических неоднородностей.
Значение времени реверберации Трев должно быть в пределах 0,2…0,4 с (таблица 2). В больших микшерных комнатах для кинопроизводства иногда могут использоваться большие значения реверберации. Частотная характеристика времени реверберации должна быть постоянной и не иметь резких скачков. Отклонения в диапазоне 200 Гц…4 кГц не должны превышать ±0,05 с, а ниже 200 Гц допускаются отклонения на 25% от среднего значения.
Кроме того, размеры контрольных комнат, требования к времени реверберации в ней, времени задержки первых отражений и другим параметрам рекомендуется выбирать в соответствии со значениями, указанными в таблице 2.
Таблица 2. |
|||
Параметры |
требования к дизайну |
||
малые контр.комнаты |
средние контр.комнаты |
||
Комната |
площадь пола, м² |
50±20 |
100±30 |
|
объем комнаты, м³ |
≥80 |
≥200 |
|
форма комнаты |
не прямоугольная, без параллельных поверхностей |
|
|
отношения размеров |
H : B : L = 1 : 1.59(±0,7) : 2,52(±0,28) |
|
|
высота комнаты, м |
3,0-4,0 |
4,0-6,0 |
Отделка интерьера |
|
однородное распределение отражающих/поглощающих поверхностей (без сильных отражений) |
|
Акустические свойства |
время реверберации, с |
0,2±0,05 |
0,3±0,1 |
|
средний коэффициент поглощения |
0,4…0,6 (на 500 Гц) |
|
|
характеристики реверберации |
отклонения ниже 250 Гц до 25%выше заданного значения |
|
|
ранние отражения (до15 мс) |
на 10 дБ ниже прямого звука |
|
|
распределение уровня звукового давл.(SPL) |
однородное распределение внутри слушательской зоны, включая место микширования |
|
Шум |
шум от вентиляции |
кривая NC15 (возможно NR15) |
В заключение необходимо подчеркнуть, что требования к акустическим характеристикам студий и контрольных комнат все время возрастают, поскольку они в значительной степени определяют качество музыкальных и речевых программ, поступающих к многомиллионной аудитории с помощью современных средств радиовещания, звукозаписи, телевидения и мультимедиа.